A Parallel Inertial Proximal Optimization Method

نویسندگان

  • Jean-Christophe Pesquet
  • Nelly Pustelnik
چکیده

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximally monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of maximal operators. Based on this algorithm, parallel proximal algorithms are proposed to minimize over a linear subspace of a Hilbert space the sum of a finite number of proper, lower semicontinuous convex functions composed with linear operators. It is shown that particular cases of these methods are the simultaneous direction method of multipliers proposed by Stetzer et al., the parallel proximal algorithm developed by Combettes and Pesquet, and a parallelized version of an algorithm proposed by Attouch and Soueycatt.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Inertial Proximal Point Method for Mixed Variational Inequality Problem

In this paper, we first propose a general inertial proximal point method for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type proximal point methods. Under certain conditions, we are able to establish the global convergence and a o(1/k) convergence rate result (under cert...

متن کامل

Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization

The alternating direction method of multipliers (ADMM) is a popular and efficient first-order method that has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of the inertial proximal point method and the proximal ...

متن کامل

A General Inertial Proximal Point Algorithm for Mixed Variational Inequality Problem

In this paper, we first propose a general inertial proximal point algorithm (PPA) for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type PPAs. Under certain conditions, we are able to establish the global convergence and nonasymptotic O(1/k) convergence rate result (under c...

متن کامل

Local Convergence of the Heavy-ball Method and iPiano for Non-convex Optimization

A local convergence result for abstract descent methods is proved. The sequence of iterates is attracted by a local (or global) minimum, stays in its neighborhood and converges. This result allows algorithms to exploit local properties of the objective function: The gradient of the Moreau envelope of a prox-regular functions is locally Lipschitz continuous and expressible in terms of the proxim...

متن کامل

An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems

We investigate the convergence of a forward-backward-forward proximal-type algorithm with inertial and memory effects when minimizing the sum of a nonsmooth function with a smooth one in the absence of convexity. The convergence is obtained provided an appropriate regularization of the objective satisfies the KurdykaLojasiewicz inequality, which is for instance fulfilled for semi-algebraic func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011